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Y Distortion Estimates for Negative Schwarzian Maps
0
P2 .
o) John Guckenheimer™
.
{ ¢ Stewart Johnson™*
b
- Abstract: One dimensional maps with a negative Schwarzian derivative are shown to
N e
‘ have area preserving properties: the distortion dis(f) = ‘ (;—,);] varies inversely proportional
to the vertical distance from a critical point for maps f with negative Schwarzian: maps
208 consisting of monotone branches mapping across an interval either have a sigma-finite
Lo absolutely continuous ergodic measure or a universal attractor at the ends of the interval.
‘::~‘:
P . . .
B I. The Schwarzian Derivative

The Schwarzian derivative was defined H.A. Schwarz in connection with the study of
confoermal maps of the complex plane. The derivative has found an interesting application
in the study of one dimensional maps where the assumption of a negative Schwarzian
has been used to establish topological conjugacy between unimodal maps with identical
kneading sequences'[3]: This and other one dimensional applications arise from inherent
measure preserving properties of maps with a negative Schwarzian derivative. ¥e attempt

in this paper to make these properties more explicit. 7 . -

Definition The Schwarzian derivative S : C3(R) — C°(R) is defined as ) iP5

. L f’”(l‘) _ g f”(l‘) .
Sh =Ty )

\
\
The following composition rule holds: ‘
\
\

.

(S fog)lr)=(Sg)(z) + (¢)(Sf)(g(z))

oo |
o Thus if f has a negative Schwarzian. so will all the iterates f® = fo fo---0 f. Lemmas
-~
j._'-j 1A & 1B and corollary 1 are standard results.
':'.::‘_ Lemma 1A Foraninterval I and f € C3(I) with f' >0
S L.
(Sf) <o < (f')"7 is conver
Nan
‘S - L oepn= L .
P (Sf)=0 <= (f')77 s linear
@ . :
o (Sf) >0 <= (f')"7 is concave ‘
n
Ot ‘
.-
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proof 2(f)}&x(f)"F = —(Sf)
end of proof

Similarly:
Lemma 1B For an interval I and f € C3(I) with f' <0

(Sf) <o <« (f) " ¥is concave
(Sf) =0 <= (f')"%is linear
(§f) >0 = (f')"*is convex

proof 2(f)}4(f)"F = —(Sf)

end of proof

A function f is said to be fractional linear if it can be written in the form f(r)

with ad — be # 0; that is, if f is a hyperbola.

Corollary 1  For f € C3(I), S(f) = o iff f is fractional linear.
proof f is fractional linear iff %(f’)"} =0

end of proof

]

_ ar+b
T cr+d

The following simple geometric observation illustrates that estimates on the distortion

and slope of functions with a negative Schwarzian derivative can be made by comparison

with fractional linear transformations.

Lemma 2 For an interval I and f,h € C*(I) with S(f) < o, S(h) = o and any a € I. if

f(a) = h(a)
f'(a) = h'(a) > 0
f"(a) = h"(a)
Taern f( ) < h fo,’_ > a
f(r) > hiz) forr <a

1

proof (h’)““r 1s linear, f ) ~7 s
r = a. see figure 1. Hence (¢')" % > (R")"¥ >0 implying 0 < f' < k' for r € I.
end of proof
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convex, and they are equal with identical derivative at
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Symmetric properties hold for decreasing functions by reflecting the z axis. Figure 2

represents the possibilities.
Definition A hyperbola h will be said to match f at a point r = a if it satisfies the

hypothesis of lemma 2 at the point r = a.

A corollary to lemma 2 is Singer's observation [9] that an increasing function of neg-

ative Schwarzian cannot go from concave to convex without having a singularity.

Corollary 2 If f € C3(I) and S(f) < o then |f’| cannot have a positive minimum.

proof In order for |f'| to have a positive minimum it would have to have an intlection
point. If f' > 0 it can be matched at the inflection point by a line of positive slope. By
lemma 2. f would have to be below the line to the right and above the line to the left.

hence no minimum for |f'| is attained. The argument for f’ < 0 is similar.

end of proof

The following coroilary implies, among other things, that a monotone function of

negative Schwarzian intersects a hyperbola at most three times.

Corollary 3 For g. f € C3(I), f monotone increasing in I with S(g) = o and S(f) <o
there can be at most one point r = b such that f(b) = g(b) and f'(b) > ¢'(b).

proof If there were two such points there would have to be a point r = a between them
such that f(a) = g(a) and f'(a) < ¢'(a). If a hvperbola h matches the function f at the
point r = « then h must intersect g in three places by lemma 2. But two hyperbolae can

Intersect at most twice. :

end of proof

The following corollary is a consequence of lemma 1.

Corollary 4 For f.h € C3(I), a.b € I with S(f) < o and S(h) = 0. and f' A’ > 0. if
f'ta) = h'(a) and f'(b) = h'(b) then f'(r) > h'(z) for r € (a.b).

proof (k')~} is linear. (f’)‘%' is convex and they are equal at @ and b, hence (f')77 < |

o

\

(h')~% for r € (0.1). J:
end of proof

II. A Terse Proof of the Folklore Theorem y

Definition For an interval I and f € C?(I) the distortion dis : C*(I) — C®(I) is defined 4

by o

- _ f'(r) e

dl-*(f)(l)— W 1
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For f.g € C?(I),the following composition rule holds for distortion:

dis(fog)r)=dis(f)(g(r))+ ~dis(g)(r)

_r
fg(z)

If y = f r) then dis(f)(r) 1s the rate of change of log(f'(r)) with respect to y:

destyir) = lOJl ‘1"3

Thus estimates on dis(f) can be used to control the change in
f' over a given range. Furthermore, if dis(f) is bounded and [f'{ > L > 1. then by
the composition rule dis( ") is uniformly bounded for all n. The utility of these ideas is
demonstrated in the following classic theorem first stated and proved by Adler [1]. For
further exposition of these ideas and an expanded treatment of the theorem please refer

to 2] and [4].

Folklore Theorem For an interval I. suppose f € C*(I), f : I — I and I can be written

as a disjoint union of intervals.] ={J ;¢ s.J. with f : J 1128 I for each interval J € 7.
If =D < ~<.L > 1 such that [f'l > L and dis( f) < D then there exists a finite erandic

invariant measure for f which is absolutley continuous with respect to Lebesgue measure.

proof Let [J, be the collection of intervals over which f" is monotone, hence VJ € 7,,.

11 ont
fr:J T=2"°I. Let ( represent Lebesgue measure.

By the composition rule for distortion it follows that dis(f") < —D_Ll. Forany r.y €

L
J € T
(f™)(z)

d . Y fnll(u)

AL - al n = d
W) / |z ODde] = / i ™
DL [Y DL
1 [ < (- 25

|ln

-1

Thus for any measurable E C I

(FTME) = Y W MEINT) < Y et C(E).((J) o UE)

JETn JETn 6(1) (( )

Similarly.

—n _DL €(E)
(f7YE)) >e T-T i)

Therefore any weak limit g of 13" (5 f~' is non-vanishing, invariant with respect to

f. and absolutely continuous with respect to Lebesgue measure. If {((E) > 0. then since 7
fHJ— Dy

generates, Ve > 0, 3n.3J € J, such that % < € and hence ((fM(E)) > 1 —eeT-T. It

follows that f is ergodic.

end of proof

Adler’s proof that f.u is weakly Bernoulli on 7, is given in the appendix.
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o ITI. Estimates on Distortion
:: The distortion dis( f) is invariant under changes of scale in the domain and is multi-
i‘ plied by the inverse of a scaling factor in the range. In analyzing the distortion and slope of
; -:j: negative Schwarzian maps. it then suffices to consider a generic monotone branch mapping
::x:: a unit interval onto itself.
::?:: Let F be the collection of maps f which are C3. monotone, have negative Schwarzian
".’ and map the unit interval I = [0,1] onto itself with f(0) = 0 and f(1) = 1. Likewise. let
e G be the collection of hyperbolae ¢ which are monotone and map the unit interval I into
,t::j: itself with ¢(0) = 0 and ¢(1) = 1.
; __ We examine how the distortion and slope of these maps depends upon vertical dis-
- placement from the ends. For a fixed ¢ > 0. define the middle e-portion of f to be that
L part extending from ( f~!(e€),€) to (f~!(1 —€).1 —¢€). If f is matched at any point of this
::.::: middle portion by a hyperbola h then by lemma 2. h will extend out the top and bottom
':;::‘. of the unit square. By a horizontal dilation and translation this hyperbola can be brought
: .i“ into the class §. Thus the minimal slope and maximal distor*ion that f € F could have
; ' in the middle e-portion will be attained by a hyperbolae in G.
, It 15 a straightforward to calculate the minimal slope and maximal distortion over the
'_::'_:: middle e-portion of branches in §. These are therefore bounds for the class F as well.
More precisely, we have the following lemmas.
o
2 Lemma 3 For g € ¢ and % >€e>0,if e < g(z) < 1—¢€ then dis(g)(z) < ;3 and
L g'(r) > 1e(1 — €)
; 'f proof The class § can be parametrized by location of the vertical asymptote: ¢ =
:Z' {gx(r) = z(f_—k’) }k<ok>.- It is readily calculated that
AL 2
= ot ) = o and distalor ) =
;.:'_: Minimizing and maximizing these functions over e < y < 1 —¢€, k < 0, k > 1 vields the
.,_, lemma.
oy
\ Lemma 4 Forfe Fandi>e>0,ife< f(z)<1—ethen f'(r)> 4e(1 — )
.' proof Let g be the hyperbola through the points (0,0), (z. f(r)) and (1.1). Then the
A vertical asymptote of g lies outside the interval [0,1] making ¢ € G. By corollary 3.
f‘* fi(x) > g'(z), hence f'(z) > 4e(1 —¢)
- end of proof
.:‘: Lemma 5 For f € F and % >€e>0,if e < f(a) <1—¢€thendis(f)(a)< 1
-
b ]
o
=
B s e A SRR 5 o e e
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proof Let b = f(a), and let A be the hyperbola that matches f at the point (a,b). By
lemma 2. 0 < h=1(0) < h~Y(1) < 1. Then h(z) = R(h™1(0) + z(h™'(1) = h=1(0))) € C.
By the composition rule for distortion,

(dis(h)(h~" (b)) 2/e

disthta) = disth)h™H0) = 3=y ) < T =) <

a ]

end of proof

IV. An Illustrative Theorem

The following theorem addresses the same type of maps as the Folklore theorem:

transformations on an interval consisting of monotone branches mapping across the inter-
val. The assumptions of bounded distortion and expansion are replaced by the assumption
of a negative Schwarzian. The conclusion is that either there is a sigma-finite absolutely
continuous ergodic invariant measure, or there is a universal attractor consisting of one or
both endpoints of the interval.

The simplest form of attraction at the endpoints is if one or both are attracting
fixed points, or together they form an attracting periodic orbit. If there are infinitely
many branches near an endpoint a more complex form of attraction is possible, in which
a majority of points near an endpoint are mapped closer to the endpoint. In this case.
any neighborhood of the endpoint is mapped across the interval, but most points near the
endpoint will tend to drift closer to the endpoint as they are iterated.

If there are a finite number of branches near the endpoints, then each endpoint is
either a fixed point, a preimage of a fixed point, or part of a periodic orbit of period two

and one need only check stability at these points to determine the dynamics of the map.

Theorem Let I be an interval, f € C3(I), f : I = I and assume I can be written
as a disjoint union of intervals, I = jezJ, with f : J 17120 I for each J € J. and
fr:|f'(z)l=1) = 0. If S(f) < o then either (a) Ye > 0,l ~a.e. r € I.3N.Vn >
N, f*(z) € (0.€){J(1 — €.1) or (b) there exists a sigma-finite ergodic invariant measure

for f which is absolutley continuous with respect to Lebesgue measure.

Working with this type of map is simpler with the assumption that the intervals [
and J € J are closed. This means that many of the endpoints of intervals J € [7 will have
two images. Since we are concerned with positive Lebesgue measure phenomenon this will
not lead to any difficulties. The following definitions and lemmas will ease the proof of the
theorem.

If f:I— Iand n(z)is a positive integer valued function on I then f™'*/(r) is called

a stopping time map with stopping rule n(zr).

6
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Definition For f: I+~ I and E C I the first return map fr mapping a subset of E to
E is defined as fg(r) = f*)(r) where n(r) = min{n: f*(z) € E}. This transformation
is well defined if n(r) is finite for (-a.e. point r € E

The following is well known. The reader is refered to the work of Rohklin [7] for

discusion and proof.

Lemma 6 If f:I+— [ and E C I 1s such that fg has a finite invariant ergodic measure.

.

then f has a sigma-finite invariant measure. Either both are absolutely continuous or both

:

iy
ll.‘
[

are singular with respect to Lebesgue measure.
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Definition For f: I — I and P.Q partitions of I, f is said to be Markov from P to Q

t. if P refines Q and f maps each element of P monotonely onto some union of elements in
:: Q. If f is Markov from P to P it is said to be Markov on P
;' The proof of the following lemma is left to the reader.

Lemma 7 Let f: I — I be Markov from P to Q and let E C I be a union of elements
n Q. If the first return map fg is well defined then it is Markov from ENP to EN Q.

The following lemma is subsumed in the proofs of Pianigiani and Yorke [6]. An

independent proof is given here for clarity.

Lemma 8 If F is a collection of disjoint intervals in I with (I —J sexJ) > 0 and
f:JserJ — Isuchthat VJ € F, f:J 1120 I and for some D < oo. dis(f*) < D
wherever f" is defined, then for ¢-a.e. z € I, 3n > 0 such that f*(r) € I —{J yerJ

proof Let v = I —{JjerJ. For z and y in the domain of a single monotone branch
of f. |§,{—;)] < €D (refer to the proof of the Folklore theorem). Therefore {(f~1(~)) >

e~ Pl(v)- U|Jser). Now f* = fo f satisfies the same hypothesis as f with a new union
of dlsJomt intervals |} yerJ J' Uje}'.] —fYy)and ¥ = 1T -U repd = 'yUf_l(*
with £(7') > (1 + e~ P (U serd)) - (). The lemma follows by induction: {(f~"(~)) <
(l—e_D(l—f(r))) ()
w end of proof
9.
_1; The idea to proving the theorem is straightforward: a dichotomy is established be-

-t tween attraction at the endpoints and the existence of a stopping time map that satisfies

y the hypothesis of the Folklore theorem. Rohklin's theorem gives a sigma-finite invariant

Pl .. . . . . .

. measure for the original transformation from the invariant measure of the stopping time
< map. The details of the proof involve accounting for all possible behavior at the endpoints.
.‘:4’.
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proof of theorem If the endpoints of I form a period two orbit, then replace the map
f with the map f?. Then either there are an infinite number of branches at an endpoint.
or the endpoint is a repelling fixed point. an attracting fixed point, or a preimage of the
other endpoint which is fixed. Let p be an endpoint that is not a preimage of the other
endpoint. The monotone sequence ar — p and integers u; are defined as follows.

If p is a repelling fixed point. let the interval [p,r] be the domain of the branch of f
at p. Then there is a unique monotone sequence ax — p in [p,r] such that ay = r and
flax) =ag—y for Ak =1.2,.... Let uy =k for kA =0,1,....

If p is an attracting fixed point, let the interval [p,r] be the domain of attraction.
Then r is a repelling fixed point. Let ag be any point in the interior of [p.r], and let
ar = f¥(ap). Then ax — p monotonely. Let uy =1 for k =0,1,....

If there are an infinite number of branches near p then let ax be any monotone sequence
approaching p such that each a; lies at the endpoint of the domain of 2 monotone branch
of f. Let upy =1for k=0,1,....

Let ¢ be the other endpoint. If ¢ does not map to p then define the monotone sequence
by — ¢ and the integers vy using the same criteria and definitions as above for p. a;. and
ug. If f(g) = plet [r,q] be the domain of the branch of f at g, let b — ¢ be the monotone
sequence in [r,q] such that f(by) = ax for k =0,1,..., and let vxg = uy for k =0.1.....

Let P be the partition consisting of the intervals of monotonicity of f and let Q4 be
the partition {(ax.bx),(a,,ai41), (b, bix1), i = k. A+ 1....}. Let wi = maz{ug.vr}. Then
by the above construction, f** is markov from PV Q to Qy for any k > 0. For any & > 0
it then follows from lemma 7 that f,, 5,) consists of monotone branches mapping onto the
interval (ag, by).

If for some & > 0 there is a set ¥ C [ak.bx] with £(4) > 0 such that f"(-
[p.ax]|J[bk.q] for all n then by lemma 8, for {-a.e. point z € [ay.b;] there exists .V such
that f*(r) € [p.ax]U[bk.q] for all n > V.

If such a v exists for all £ > 0 then for any € > 0 and (-a.e r € I there exists N such
that f*(z) € [0,¢]{J[1 — e, 1] forall n > V.

Otherwise. there will exist a k such that fi,, s,] is defined for f-a.e z € [ai.bi]. For
such a k. let f = fi,, s,) so that f : [ax,bk] — [ak,bk]. For any n > 1. every branch of
f™ is a middle portion of some branch of f" for some n. With 6 = min{p—ay.q— b} ir
follows that dis(f") < % for all n > 1.

The proof that f possesses a finite invariant measure which is absolutely continuous
XUAMKEARTES

‘ e =
bounded by L and hence any weak limit p of LS " | fof~tisinvariant for f and absolutely

with respect to Lebesgue measure proceeds as in the Folklore theorem:|In

continuous with respect to Lebesgue measure.,
To prove ergodicity it is necessary to show that the partition F of [a;. b) formed by

intervals of monotonicity of f is a generating partition for f. It follows from the above
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that f has no attracting fixed points or orbits (otherwise u would have a singularity).
“ Suppose F does not generate and let J be the maximal open interval in \/,_} fUF). I
( fr(J) = fm{J) for some n # m then f"(J) would have to contain an attracting periodic
::: orbit. If fA(J)Nf™(J) # 0 but f*(J) # £™(J) then J was not maximal. Then f"(.J) must
:_:‘_Z all be disjoint. and therefore increasingly small. This would force ¢ to have a singulariry.
i Hence no such J exists and F generates.
\" The proof of ergodicity again proceeds the same as in the Folklore Theorem. If
» ¢(E) > 0 then for all € > 0. there is some n and some J € \/ [y f'(F) such that [([J(;)E) < €.
E. Then {(f*(E)) > 1 —€-e¥. Hence p is ergodic.
-_;: Then f!. and hence f. possesses a sigma-finite invariant ergodic measure which is
i absolutely continuous with respect to Lebesgue measure.
end of proof
Appendix
; Adler’s proof that f with invariant measure p given by the Folklore theorem is weakly
Y Bernoulli is given. For measurable sets 4 and B, the measure of 4 relative to B is
. ((A]B) = g4 B).
N The span of a set of partitions \/::01 J: 1s the partition formed by all intersections
JoNJiN...NJ,y with J; € J;. For a partition J. let J, = Vo' f~(J). For example.
& if J is the intervals of monotonicity of f then 7, will be the intervals of monotonicity of
.._ fn.

A transformation f is said to be Bernoulli if there is a partition J such that Vn.
VYA B € T, p(f~™(A)N B) = u(A)u(B). Thus as points are iterated under f their first
n locations in the partition J is independent of their next n locations. The isomorphism

hEhr

2
¥

1Ok

theorem due to Ornstien [3] states the two Bernoulli transformations with the same entropy

. . .

> are isomorphic.
e In general it 1s difficult to exhibit such a partition for a given Bernoulli transformation.
- [t is easier to demonstrate the following property called weak Bernoullicity which implies

Bernoullicity (see [8]).

v The transformation f is said to be weakly Bernoulli on the partition [J if

- Z (=) N B) = u(A)(B) - 0 as m — x uniformly in »

..:r A.BeJ,
LY . . . . . . ..
®. This implies that as points are iterated under f a block of n locations in the partition
e J becomes increasingly independent of a second block of n locations as the points are
~ iterated longer hetween blocks. To prove weak Bernoullicity it suffices to show that
‘:‘- —(m+4n);
2 pl f (4)N B) -
v pl fTmMF )N B) - 1 as m — x

Y plA)u( B)
) uniformly over all n and all 4. B € 7.,.
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We let 7, be the partition of intervals over which f" is monotone.

Lemma A V measurable sets A.¥Ym.n > 0. VJy.Jy € Tman such that f7(Jy) = f™(Jo)
=c¢ such that

FTUm T AT = T AT < e LT A)

proof ((fm(J;)) < L™". Thus Vr.y € Ji.

(f™) ()] DL pL™¥!
| iu"m Ild A A T
Hence.
A (f”‘)’(x)\ n
—cL R 14+c¢'L
¢ <!(f"‘)'(y) ShTess

1-1 onto

for some ¢’. Since f™ : fTimFA YN T, =" A N f™(J;) and f™(Jy) = F7( T )

it foilows that

f—(m+n) 4\']1

Jr—n 'T—n
1—-c¢L (=) T) <14+cL
.. . . ~ DL
Combining this with £(f~(m+?)(4)1J;) < e T- %—;)l vields the lemma for ¢ = el

end of proof

The following is a property of averages.

Lemma B Fora;.b; >0, a; = b; =1, and any numbers 4;, B,.

S gy =3 Bib < (Sup{Ai} = Inf{A 1 = Inf{x})+ Sup{4, - B}

proof > ., a;—b = Z,, >a, Di ~ a; hence
o ' 1

T A, ~Y Bib, =Y Awa, =3 Auhi +5 A, -5 Bib,
=> Afa; = b)) +> (A = Bi)b;
<Y ash Sup{diHai = b)) =% sosa, Inf{A (b — a;) + Sup{4, - B,}
= (Sup{A,} = Inf{A DY aisblai = b)) + Sup{d; = B}
S (Sup{d} = Inf{a il = Inf{z} + Sup{d - Bi}

end of proof

Definition For a measurable et 4. let

Dn(:{) = SI[[)J"Jzej“{C(."“-]] ) — f(.v-“-]z)}

10



Lemma C 3Je.¢ > 0 such that YVe.m.n > 0.m > k.

Do(f7" ™A < (1 = €)Dpgn (F7T™(A)) + e L7 A

proof For Jy.Jy € J,. let {J{} be such that J{ € Thix. J{ C Ji. let {J§} be snchi that
Jy € Tnsi. J3 C Ja. and let the indices be such that f™(J{) = f™(J3). Then

Do f=" ™A = Supy, ez { Y CfT "M - ()

_Z BRIV AR A

_pL eJi .
If e = e T=7 then [I—J% < 1 — €. and it follows from lemmas A and B that

D, (ftntmi 4y
< Supy . peg A (Sup Cf™™ ™A ~ Infy (F 7™ A)T)) - (3 =€)
+Supi {((fTMAIL) = (ST )
< (1= e)Dpui( fTIF™(A)) + cL™™(A)

end of proof

To prove Bernoullicity. it follows from lemma C that ﬁD,,(f""*"”(.—l",-) — 0 as

m — > uniformly over all n, all measurable sets 4. Therefore

((f n+m) ‘_]
oqf- ""’"‘)(-l))

as m — x

uniformly over all n, all J € 7, and all measurable sets 4. If {J'} is the set of interval

components of f~%(J) then

/‘{f—(n+m+k)(__{)|f—k(‘])) B S [(f—(n+m+k)(‘_1)|]')

= (oJ — c —
l(f‘""*’"*’k’(_-i)) ;( ) C(f“"'*""*k)(;l)) as m X

uniformly over all n.all J £ 7, and all measurable sets 4. Taking the limit as » — ~

vields pl f7 4 T) — 1 as m — > uniformly over all n. all J € 7, and ali

sy
measurable 4. Thus f.u is weakly Bernoulli on 7,

e
.
PP FR PN, -L‘.f‘_l_.t_l“h_l_is_“’
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